

 ISSN2347-2243www.iajlb.com

Indo-Am. J.ofLifeSc& Bt.,202- Vol.4,Issue.1,jan2016

Text to Audio Conversion System with Efficient Portable Camera

Methods for Reconfiguring Tests of Composite Web Services on

the Fly
Amiri Mahalili

ABSTRACT

A suitable testing strategy for service-oriented

applications will be implemented in this project. And

boost the efficiency of the online service. In this

article, I outline an architecture that can adapt to

shifting requirements in terms of service operation,

argument types, and service composition. My model

atomic and composite web services undergo random

testing at runtime as part of the testing system's proof

of concept. in order to maintain the testing

infrastructure's availability while a new test subject is

being configured automatically.

Keywords: Software Testing, Service Oriented Architecture (SOA) Testing, Runtime Analysis, and Code Smell.

1. INTRODUCTION

Web service and software reliability may be

determined via rigorous testing and verification of

quality of service. The quality of service (QoS)

assurance provided by existing software testing

methods is insufficient for service-based

applications.

While it is possible to expose a Web service as an

atomic unit with merely an interface for interaction,

most web services are really composites of several

services, some of which may even be hosted by

unaffiliated third parties. Such web services and

applications are difficult to evaluate because to

issues such as dynamic composition and a lack of

oversight over the web services' offered

components. This article provides [1] to

demonstrate the importance of testing during

runtime.[2] Real-time detection of changes to

service interfaces and composition, including

component addition, deletion, and modification.

University Of Madras, IDE Building, Chepauk, Chennai, Tamil Nadu 600005, India

http://www.iajlb.com/

MOTIVATION & RELATED WORK

Accessing a website's contents for display is just half

of what the World Wide Web entails now that a new

idea known as web services has been introduced. We

merely sent some input to the online service, and he

gave you the results without you having to download

and install any software.

It's possible that web service has either atomic or

composite. It has to be tested to ensure its

dependability. Composite web services are complex

and challenging, but you must test them now. Many

researchers these days are focusing on making web

service testing tools more trustworthy. Mutative

hange, as defined by King and Ganti [3]: the

modification of an existing part while keeping some

of its original functioning. Modifications that add

anything new are called additive changes.

2. LITERATURE REVIEW

The purpose of this literature review is to compare

and contrast the various methods currently in use for

anticipating users' actions.

Integration testing technique for Web services,

shown by Z. Hong and Z. Yufeng[4], involves the

cooperative invocation of numerous test service

partners during runtime. The included testservices

were used to improve the testing procedure as a

whole. Existing testing frameworks were said to have

difficulties with SOA application testing. Due to the

implementation being concealed from the users,

there are no software artifacts. Test execution can't

be controlled because of interactions between

distributed components. Components give an opaque

interface, making it difficult to see internal activities.

We propose using runtime or live testing

methodologies for SOA applications based on the

research of Hong and Yufeng. Runtime testing of

SOA requires testing approaches that may evolve

with the system being evaluated. Runtime testing

needs for SOA applications were discovered by Bai

et al. [5], and an adaptive testing framework was

designed to help with that. Based on their prior

work [6] and the work of Tsai et al. [7], Bai et al.

suggested an adaptive test framework that used a

test broker architecture. They employ an enhanced

version of the UDDI service registry as a test

broker. They implemented a Web service under test

as a feedback procedure, which provided a

response to a specific test and guided further

testing steps.

Because Web services don't provide such details to

end users, they can't see how a service is put

together. Testing them in a black-box environment

is unrealistic. A business process's output for a

given set of parameters must be checked against

the process's internal logic to ensure it is correct.

There are now available testing tools for service

composition. Although several testing methods

may be used to the task of evaluating a service's

composition, Bucchiarone et al. [12] claim that

none of them are advanced enough to deal with the

complexity of the composition's activities.

The interface specification is a major tool for

automated test creation in Web services. Examples

of popular methods include WSDL-based test data

creation [10]. However, there are additional

language standards that might be utilized to

generate test cases. Operations and messages are

tied to a concrete network protocol and message

format, and the specifications for that port type

make up a reusable binding. The WSDL file

specifies the Web service's public face. Web

services via the Internet often include the usage of

WSDL, SOAP, and an XML Schema. By reading

the WSDL file, a client software may learn what

methods are supported by a Web service. The

WSDL file incorporates XML Schema for any

custom data types required. One of the WSDL file's

actions may then be called by the client using

SOAP, for instance via XML over HTTP.

 Fig. 1. Web services in a service-oriented architecture.

3. PROPOSED WORK

Cloud-based software applications that make use of

atomic and composite Web services are the primary

target of the proposed system's testing efforts. Many

cloud-based apps are built from indistinct third-party

services. These hidden services are always evolving.

Runtime (during actual use of the system) testing is

just as important as testing during development. Test

artifacts for such applications must be kept up-to-

date in real-time in reaction to changes in order to

pass runtime testing. They are connected to software

testing and online services in the proposed system

[1].

The architecture of the testing system consists of four

basic levels. The Service Interface Layer facilitates

communication with parties outside of the test

environment. New test requests may be submitted by

service providers using the interface, and test policy

updates can be made as needed. An external

coordinator is part of the Service Interface Layer that

communicates with clients when they call a Web

service and employs encrypted connections for

administrative transactions related to testing. The

System Operations Layer is where all the meaty logic

for things like testing techniques, stateful

management, and system reconfiguration operations. The

Service Management Layer provides system

administration components and test scheduling

components. The administration components are

responsible for handling test service registrations and test

policy updates. The scheduling components perform test

allocations and trigger tests based on the schedule in the

test policy. The Resource Access Layer provides data

access logic for test data retrieval and storage.When the

user sends request to the service provider for code

smelling technique. For Enhancement we will enhance the

work by implementing code smelling technique.

Fig. 2. Architecture Diagram.

4. SUMMARY OF LITERATURE REVIEW

Table 1: Summary

Z. Hong
and Z.
Yufeng

[4]

collaborating

multiple test

service

partners invoked

at runtime.

Collaborative

testing of web

services

2012

X. Bai, C.

Yinong,

and S.
Zhongkui

[5]

adaptive testing

framework

which can

continuously

learn and
improve

Adaptive web

services

testing

2007

M.
Chunyan,

D.

Chenglie,
Z. Tao, H.

Fei, and C.

Xiaobin[10
]

automated test

generation

is through the

interface

specification

WSDLbased

automated test

data generation
for web service

2008

Author Method Application Year

M. B.

Cooray,

J. H.

Hamlyn-

Harris,

and R.

G.

Merkel[

2]

WSDL service

descriptions as

a framework for

generating test

cases

Test

reconfiguratio

n

2011

Mark B.

Cooray,

James

H.

Hamlyn-

Harris,

and

Robert

G.

Merkel

[1]

Automated
reconfiguration

Dynamic Test

Reconfigurati

on

for

Composite

Web Services

2015

5. CONCLUSION

This paper has provided a more current evaluation

and updation of ‘Dynamic Test Reconfiguration

for Composite Web Services’ That will make more

reliable composite web service & reduce waiting

time of the web service consumer.

REFERENCES
According to [1] "Dynamic Test Reconfiguration for

Composite Web Services" by Mark B. Cooray,

James H. Hamlyn-Harris, and Robert G. Merkel.

July/August 2015 Issue of IEEE Transactions on

Services Computing Volume 8 Number 4

"Test reconfiguration for service oriented

applications," by M. B. Cooray, J. H. Hamlyn-Harris,

and R. G. Merkel, was published in the proceedings

of the 2011 IEEE International Conference on Utility

Cloud Computing.

[3] "Migrating autonomic self-testing to the cloud,"

by T. M. King and A. S. Ganti, was published in the

proceedings of the 2010 International Conference on

Software Testing, Verification, and Validation held

in Paris, France (pp. 438–443).

According to [4] "Collaborative testing of web

services," by Z. Hong and Z. Yufeng, published in

IEEE Trans. Service Comput., volume 5, issue 1,

pages 116-130, January-March 2012.

"Adaptive web services testing," by X. Bai, C.

Yinong, and S. Zhongkui, was published in the

proceedings of the 31st Annual ACM Symposium on

Applied Computing in 2007 (pp. 233-236).

Sixth, "Design of a Trustworthy Service Broker and

Dependence-Based Progressive Group Testing," Int.

J. Simul. Process Modell., volume 3, pages 66-79,

2007. Authors X. Bai, Z. Cao, and Y. Chen.

"Verification of web services using an enhanced

UDDI server," by W. T. Tsai, R. Paul, Z. Cao, L. Yu,

and A. Saimi, published in Proceedings of the Eighth

International Workshop on Object-Oriented Real-

Time Dependable Systems, 2003, pages 131-138.

[1] "Dynamic reconfigurable testing of service-

oriented architecture," by X. Bai, X. Dezheng, D.

Guilan, T. Wei-Tek, and C. Yinong, in

Proceedings of the 31st Annual ACM/IEEE/ACM

Symposium on Theory and Practice of Software

Engineering (pp. 368–378), 2007.

"Strategies for the run-time testing of third party

web services," by David Brenner, Christopher

Atkinson, Oliver Hummel, and David Stoll, was

published in the proceedings of the 2007 IEEE

International Conference on Service-Oriented

Computing Applications.

"WSDLbased automated test data generation for

web service," by M. Chunyan, D. Chenglie, Z.

Tao, H. Fei, and C. Xiaobin, was published in the

proceedings of the 2008 international conference

on computing, science, and software engineering

(Proc.

"WSDL-based automatic test case generation for

web services testing," by X. Bai, D. Wenli, T.

Wei-Tek, and C. Yinong, was published in the

proceedings of the 2005 IEEE International

Workshop on Service-Oriented Systems

Engineering.

Reference: [5] "Testing service composition" by

A. Bucchiarone, H. Melgratti, and F. Severoni in

Proceedings of the Eighth Argentine Symposium

on Software Engineering, Mar del Plata,

Argentina, 2007. Pages 1-16.

